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A method of reducing the problem of a nonplanar cut to a well investigated 
problem of a plane cut is given. The method is based on representing the 
solution in the form of the second potential of the theory of elasticity, and 

subsequently reducing the problem to a pseudodifferential equation on a non- 
planar compact S with the edge &S lying in the plane. The resulting equa- 
tion is then reduced by asymptotic exchange to a pseudodifferential equation 
on a plane surface which is a projection of S on the plane containing as. 
The last equation is transformed using a standard method into a sequence of 
pseudodifferential equations each of which can be solved using the well known 
methods ( e. g. Fourier transforms). If the surface is almost plane, then the 
first term of the series will already give an approximate solution of the problem. 

Solutions of three-dimensional problems of equilibrium of an elastic body with a 
cut are known for the cases in which the surface S containing the cut lies in a plane 

[ 1,2 ] or, when the problem is axisymmetric . In the latter case it can be reduced to the 
problem of conjugation, This was the method used to solve the problem of a cut in the 
form of a spherical cup [ 3 1. The solution however is cumbersome and does not yield 
the stress pattern readily. 

1. Let us consider an infinite isotropic elastic space with a cut along the surface 
~7 which we assume to be a Liapunov manifold of continuous curvature, with the edge 

d,_$‘. The cut edges are acted upon by the distributed loads q. Let n denote the unit 
vector normal to S at the point 5. The points of the cut edges will be accompanied by 
the plus or minus sign, depending on whether the direction of the normal to the boundary 
of the elastic body coincides with, or opposes the direction of the normal n to the sur- 
face S . We shall assume that the field q satisfies the condition 

q (s+> = - q (4 
(1.1) 

at the cut edges. In this case the state of the elastic medium with a cut under a load 
can be determined by defining a pair {s, q} where q (x) = q (It’+) denotes the 
field on 8. 

In what follows, we shall denote the displacement and stress fields by u and T, 
respectively, with (T* = n-l’,. The dot appearing between the tensors of different 
order denotes convolution operators in the tensor algebra which are defined on the poly- 

ads as follows: abcde + ( ab). ( cde) = (b - c) ade ; abcde, ab etc. denote 
the polyadic (tensor ) product of vectors, and b - c denotes the scalar product of vectors. 

The influence tensor of an unbounded elastic medium is defined by the relation [ 4 ] 

r (y - 2) = hl $+/J&RR (1.2) 

556 
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16np (I- Y) 
where I is a unit tensor of order two, 

Letus express the field u in terms of the field b of displacement discontinuities on s 

b(z) = lim u (z) 
Z--r%- - ;i:+u (2) (1.3) 

To do this, we consider [5 ] the following two states of the elastic medium: 

1”. Symmetric forces 9 act at the cut edges, 

2’. A concentrated force P acts at thepoint 2 @ s andtheforces If: cr, (y) are 
applied at the cut edges S* so as to prevent the edges from a mutual displacement under 
the action of the force P, Here II = n (y) denotes the normal to the surface at the point 

Y E s. 
As we know [4], 

s%(y) = @)n (Y, z).P (1.4) 

0, (y, z) = 8n (1: v) Hi [(1 - 2x7) (nR - Rn - n-RI) - 3 % RR] (1.5) 

Applying the theorem of reciprocity of work for these two states and taking into 
account the fact that the forces of the first state do not perform any work on the dis- 

placements corresponding to the second state, we have 

u (2) ’ p + d [u (Y’) * OrI (Y) + u (Y-J * (- OrI (y))l dS, = 0 (1.6 1 

This with (1.3 )) (1.4 ) and the arbitrariness of the force P, yields 

u(b)(z) = ~bW@&, ~)a&, (I.71 

and from this it follows that the solution of the problem can be sought in the form ( I. 7 ). 

2, In what follows, we shall need the knowledge of certain properties of the field 
(1.7 ) [6,7 1. If b E: L, (S) and p > 1, the angular boundary values of the field 

(1.7 ) exist for almost every 2 E S 

lim u (a) = II* (x), 2 E K (2, a), i- 7.-z- 

Here(K (cc, a) is a cone with the center at the point 2 C% 8, the vertex angle Cc E 
(0, n) and the axis n (2)). In addition we have the relation 

u*((;c)=~ +b(4 t v.p.@)4dy, s)dS, 
Y 

(2.1) 

The principal value of the singular integral 

v.p. c = lim c 
5 G-0 S\$X, 6) 

where S (x, 6) denotes a part of the surface S lying inside the cylinder C (2, n (z), 6) 
of radius e,with the axis n (2) passing through the point x . If, in addition, we nave 

b E CO,P (SO), s,, c s and So n dS = 0, then the field u(b)(z) is extended 
continuously at each interior point So and the boundary values are obtained from (2.1). 
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Let us introduce the stress tensor operator [ 6 ] 

T(n, V)=yn.VI+p(nV)*+hnV (2.2 ) 

Its action on the functions with tensor values can be determined using the standard rules 
of tensor algebra, and V is a vector-differential operator [43, n V is the dyadic pro- 
duct of the unit vector n and vector operator V ; ( n F)* is the conjugate dyadic 
operator which acts according to the rule ( n V)* A = i n ( V A))*, where the linear 

operator ( )s on the polyads is obtained as follows: (&cd), = hcd , ( n. r 1) A =: 

n* V ( I A). 
Contracting the stress operator with the displacement field we obtain the force 

vector on the plane with the normal n. Let us compute 

T(n, V).u(b)(z)== iT,.[b(y)-@,.(y, s)]d~S?,, zt6jE.S 

Since II,, (b) = T, . [b k.4. @v (Y, 41 P re resents a linear mapping ~3 -+ I?“, 
there exists a tensor of order two 

Ii,, (y, z) : T,. [b (y).@v (y, z)l = b (y).Hnv (~7 4 

Here Y = n (y) and 11 is a unit vector entering the operator T, = T (n, V,). It is 

clear that the tensor H,,, (y, Z) = 1 y - z l-3 K,, (y, ;), K,,, (y, z) represents 
a bounded tensor function on S x S. 

Thus the force vector on the plane with the normal n at the point z .$Z? 8 in a 
medium with a cut S on which the displacement field undergoes a discontinuity b, 

can be written in the form 

0, (b) (2) = s b (y). Hnv (y, 4 dS, 
S 

(2.3) 

To find b in terms of the specified force vector q on S, we must set down the 
condition (formal for the time being) 

Ekan (b) (2) = g (z), n = n (2) (2.4 1 

We know [ 61 that [<TV (b)l+ = [a, (b)l-, if b E C1*B (5’) , and we also have 
(I, (b) E C%S (Ra \ a$). Obviously, one cannot perform the passage to the limit 
z -+ z E_ S directly under the integral sign in (2.3 ), since the tensor H,,v has a 

singularity R-3 and the integral therefore does not exist even in the sense of its prin- 
cipal value. For this reason a suitable regularization must be carried out under the in- 
tegral appearing in the right hand side of (2.3 ) when x E 8 . In the present case the 
most convenient regularization makes use of transformation of the integral according 
to the Stokes theorem [ 71 

on (b) (4 = ’ u [n, H (y, z), M (Y), b @)I ds, + j- b (y).L (y, z) dl, (2.5 ) 
(1s 

where the following notation is employed : 
u[n,H,M, b] =p2[n.Mb..H2+Mb.-H2.n-nsH.M.b- (2.6 1 
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(H.M. b).n] + 1’nh.M.b + ApnMb.. .H2 + 

p((h+y)[n.hM.b+h(M*b).n] 

H=H(y,z)=V,r(y-z), h=h(y,z)=V,.l’(y-zz) 

M = M (y) = vDV - (vD,)* = vV, - (vV,)*, y = n fy) 

(2.6 1 

D, = V, - w. V, is the operaotr of tangential differentiation, Ha = (H (9, Z))I 
is an isomer of the tensor H (y, z) defined previously and L (y, z) is a second order 
tensor the specific form of which is immaterial. 

Using the property of the derivatives of the first potential of the theory of elasticity 

[6,7]andpassingin(2.5)tothelimitas z+xEs\88 ,weobtainasum of 
singular (in the sense of the principal value) of the convolution form integrals 

and the contour integral 

n H(Mb) dS, s 
S 

s 
OS 

b (Y) - L (Y, 4 dl, 

Now the condition (2.4) has a meaning and defines a pseudodifferential equation 
on the surface S with edge &j’. All that follows now aims at performing an accurate 
change of variables in the singular integrals so as to obtain an equation on a plane, and 
at solving this equation by means of asymptotic expansions. 

3 . Let the surface 8 differ but little from a plane, i, e. let a three-dimensional 
system of orthogonal unit vectors {e,, e2, e3} exist in which the equation of this 

surface can be written in the form 

Xa = ef 6% 52)1 & E [O, 1) (3. I) 

We shall also demand that the edge dS of the surface lies in the plane H : x3 = 0, 
i.e. f h x2) = 0 when (x1, x2) E 8s. 

Let n (A) denote the projection of the set A on l-I along e3 . The equation of 
the surface (3.1) generates a mapping F of the cylinder lying above 2 = sc (8) , 
onto itself. F : Z X RI-+ 2 x RI acts according to the formula 

x=F(Q=E+af(G)s (3.2) 

The mapping F is in one to one correspondence, Let a field X (X) be deiined in 
the neighborhood of the surface S Then F generates a field X, near Z 

x* (E) = x (x (8) (3.3 ) 

It can be shown that (the symbol z denotes equality with an accuracy to terms of 

order e2) 

(VN* (E) = VP* (E) - eP &I) &x* (9 (3.4 
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In addition we give the following asymptotic expressions to be used below : 

n, (6) = e3 + -I (%h nl (6) = - P (%o) 

(RX)* = DE+ 8 
[ 
P1(es--el)~+pa(es-e,)~] 

(M (x))* = M (E) + ~MI (0 M,b, = (Mb), 

(3.6 I 

(3.7) 

(3.531 

Let%+ X, q-g, R= y- X, I:= q-- g, p= n(R)bethe 

projection of R on III, A (q, E) = f (~1~) - f&J, rlo = ST @-I). 
From (3.2 ) it follows that 

R = r + EAe, (3.9) 

Ram p + mAr*lrl. e3, r1 = r-h’, cz E R1 

For the tensor H (gy, 3) = V, F (y - x) we have (the summation from 1 to 3 is 

carried out over the umbra1 index ) 

H (y, s) = {&RI - pl (IR + ejRe$) + 3p1 $ RRR} & 

Applying Eqs . (3.9 1, we obtain 

where ‘I! (7, E) is a pointwise bounded tensor function and (me& = rre3 + re,r $- 
e3rr. 

When 5, 3 e S, g, q E X , we have r = p and rl* e, = 0, therefore 

% (II, E) = H (Q E) + &H, (r, E) 
(3. I.0 > 

The integrand expressions in (2.5) include the fields M (n (y), V,) b (y) for 
y E: 3. To compute these fields we must, in addition, define the field b near the 

surface 8. We shall do this as follows ( TIs is the projection onto ,5’ along ea I: 

b(z) = b&z), VZEX x R1 

According to (3.3 ), a field b, (E) appears in the neighborhood of 2, and it is clear 

that b, = const along the normal e3 to the surface 2. Since M (II, V) = M 

(n, D), it follows from the Hadamard - Hugoniot theorem [ 8 1, which states that 

Dt1 ls = Dfi 1s for any fl and h : f~ Is = I2 IS, that any supplementary smooth 

definition of the fields near the surface is correct. 
Let us now consider the singular integral in the sense of its principal value 

v.p. f R (r, .y) cp (y) dS, = lim s K (x, Y) cp (Y) d% 
z++rJ S\S(s, bj 

(3.11) 
S 
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Performing the change of variables (3‘2) in the integral following the limit sign in 

(3.11) which represents an ordinary n~~~~~r integral we obtain 

s K @* $1 T &I d&J = 
I 

K# (%* rl) cp* OI) 1 @I) dq (3.12 1 

Sk%% bf ZY M.U 

Here 1 (VJ) denotes the first quadratic form of the surface 8. Passing in (3.12 3 to the 
limit as Ei -+ 8, weobtain 

v.p. \ K (3, Y) CP fv) as, = Yy G (E* 9) Tp* 00 I(T) dr( 
S i: 

and the avatar integral in the right hand side is not equal to the corr~po~d~~g integral 

in the sense of its principai value, since the region n,!J (5, 6) is not a circle, Never- 

theless we have [ 6,9 ] 

and rl -+ E in such a manner that the angle between the vectors ‘I - 5 and $ is 
constant and it (E, @) denotes the angle between the vector R z y - x and its 

projectiun p on 2. 
It can be shown that [6] 

We can nfow perform the change of variables in (2.5 1, From (3.10) we obtain 
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6% (W, t%) = *o tb,) t%) + e*l t&f t%J + L, (b,) (%I 

00 W (E) = \ (J h H h EL M (rl), b, (r)] dq 
E 

(3.13 ) 

The vector a: [n, H, M, bj is defined by (2.6 ) , and all operators appearing in 

(3.13 ) are obviously linear. 

4. We shall seek a solution of the pseudo-differential (integro-differential ) equation 

(on P>)* = (on)* (W = qrk 
(4.1) 

as a formal series in E 

b, (%I = bo (E) + Sbl (%) + . . . (4.2) 

We note that the equation (4.1) is equivalent to (2.5 ), since the mapping is in one to 

one correspondence and smooth. 
Expanding the lead 9+ (%) = 40 t%) + S 91 (%I + - -- into a series in powers of 

E, substituting (4.2 ) into (3.13 ) and equating terms of like power in 8, we obtain 

us (bs) + L, (ba) = qs problem J,) 

00 (h) + L, (W = 91 problem JA 

Let us consider the problem JO. From the definition of 0s it follows that the 

problem is that of the cut in 2 with the load go. If the solution bo of the problem is 
sought in the class of fields in which the energy density is integrable in the neighbor - 

hood of 32 , we arrive at the physically obvious condition b. lax = 0. and the inte- 

gral over dZ: vanishes, i, e. I,, (b,) = 0. 
Having determined the solution b. of the problem of a plane cut we substitute it into 
the problem $1 and we obtain an equation for determining br. Thus J, represents a 

problem of a plane cut in 2: subjected to the forces Q1 = qI - ul ($). 
Performing the expansion in 8 to the accuracy of e*+i and equating the expressions 
accompanying the like powers of S, we would obtain a sequence of problems JO, II, 

. . . . I n. A solution bk of a problem .T1, can be obtained provided that the solu- 
tions bo, bl, . . #, bk-1 of the problems Jo, J1, . . ., Jk_l are known. The oper- 
ators of the problems JI, are identical for all ,$- , only the right-hand sides Qk , i. e. 

the fictitious, differ. 
It can be proved that 

?t 

therefore if the surface is nearly plane, then b. + eb, represents an approximate 

solution of the problem. 
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We note that the above asymptotic method of solving a pseudodifferential equa - 
tion on nonplanar manifolds with an edge can be applied, after obvious modifications, 

to solving the problems of cuts under the conditions of plane deformation. Since the 
solutions are simple for the case of a rectilinear cut, the method is also effective in the 
case of two-dimensional problems. 

The author expresses deep gratitude to A. A. Vakulenko for the constant interest 
and help shown. 
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